This documentation is automatically generated by online-judge-tools/verification-helper
#include "weilycoder/number_theory/modint.hpp"#ifndef WEILYCODER_MODINT_HPP
#define WEILYCODER_MODINT_HPP
/**
* @file modint.hpp
* @brief Modular Integer Class
*/
#include "mod_utility.hpp"
#include <cstdint>
#include <istream>
#include <ostream>
namespace weilycoder {
/**
* @brief Modular Integer with compile-time modulus.
* @tparam Modulus The modulus.
*/
template <uint64_t Modulus> struct modint {
private:
uint64_t value;
public:
constexpr modint() : value(0) {}
constexpr modint(uint32_t v) : value(v % Modulus) {}
constexpr modint(int32_t v) { from_i64(v); }
constexpr modint(uint64_t v) : value(v % Modulus) {}
constexpr modint(int64_t v) { from_i64(v); }
constexpr void from_i64(int64_t v) {
int64_t x = v % static_cast<int64_t>(Modulus);
if (x < 0)
x += Modulus;
value = static_cast<uint64_t>(x);
}
explicit operator uint64_t() const { return value; }
friend constexpr modint<Modulus> operator+(const modint<Modulus> &lhs,
const modint<Modulus> &rhs) {
return modint<Modulus>(mod_add<Modulus>(lhs.value, rhs.value));
}
friend constexpr modint<Modulus> operator-(const modint<Modulus> &lhs,
const modint<Modulus> &rhs) {
return modint<Modulus>(mod_sub<Modulus>(lhs.value, rhs.value));
}
friend constexpr modint<Modulus> operator*(const modint<Modulus> &lhs,
const modint<Modulus> &rhs) {
return modint<Modulus>(mod_mul<Modulus>(lhs.value, rhs.value));
}
modint &operator+=(const modint &other) {
value = mod_add<Modulus>(value, other.value);
return *this;
}
modint &operator-=(const modint &other) {
value = mod_sub<Modulus>(value, other.value);
return *this;
}
modint &operator*=(const modint &other) {
value = mod_mul<Modulus>(value, other.value);
return *this;
}
friend std::ostream &operator<<(std::ostream &os, const modint &m) {
return os << m.value;
}
friend std::istream &operator>>(std::istream &is, modint &m) {
int64_t v;
is >> v;
m.from_i64(v);
return is;
}
};
} // namespace weilycoder
#endif#line 1 "weilycoder/number_theory/modint.hpp"
/**
* @file modint.hpp
* @brief Modular Integer Class
*/
#line 1 "weilycoder/number_theory/mod_utility.hpp"
/**
* @file mod_utility.hpp
* @brief Modular Arithmetic Utilities
*/
#include <cstdint>
namespace weilycoder {
using u128 = unsigned __int128;
/**
* @brief Perform modular addition for 64-bit integers.
* @tparam bit32 If true, won't use 128-bit arithmetic. You should ensure that
* all inputs are small enough to avoid overflow (i.e. bit-32).
* @param a The first addend.
* @param b The second addend.
* @param modulus The modulus.
* @return (a + b) % modulus
*/
template <bool bit32 = false>
constexpr uint64_t mod_add(uint64_t a, uint64_t b, uint64_t modulus) {
if constexpr (bit32) {
uint64_t res = a + b;
if (res >= modulus)
res -= modulus;
return res;
} else {
u128 res = static_cast<u128>(a) + b;
if (res >= modulus)
res -= modulus;
return res;
}
}
/**
* @brief Perform modular addition for 64-bit integers with a compile-time
* modulus.
* @tparam Modulus The modulus.
* @param a The first addend.
* @param b The second addend.
* @return (a + b) % Modulus
*/
template <uint64_t Modulus> constexpr uint64_t mod_add(uint64_t a, uint64_t b) {
if constexpr (Modulus <= UINT32_MAX) {
uint64_t res = a + b;
if (res >= Modulus)
res -= Modulus;
return res;
} else {
u128 res = static_cast<u128>(a) + b;
if (res >= Modulus)
res -= Modulus;
return res;
}
}
/**
* @brief Perform modular subtraction for 64-bit integers.
* @tparam bit32 If true, won't use 128-bit arithmetic. You should ensure that
* all inputs are small enough to avoid overflow (i.e. bit-32).
* @param a The minuend.
* @param b The subtrahend.
* @param modulus The modulus.
* @return (a - b) % modulus
*/
template <bool bit32 = false>
constexpr uint64_t mod_sub(uint64_t a, uint64_t b, uint64_t modulus) {
if constexpr (bit32) {
uint64_t res = (a >= b) ? (a - b) : (modulus + a - b);
return res;
} else {
u128 res = (a >= b) ? (a - b) : (static_cast<u128>(modulus) + a - b);
return res;
}
}
/**
* @brief Perform modular subtraction for 64-bit integers with a compile-time
* modulus.
* @tparam Modulus The modulus.
* @param a The minuend.
* @param b The subtrahend.
* @return (a - b) % Modulus
*/
template <uint64_t Modulus> constexpr uint64_t mod_sub(uint64_t a, uint64_t b) {
if constexpr (Modulus <= UINT32_MAX) {
uint64_t res = (a >= b) ? (a - b) : (Modulus + a - b);
return res;
} else {
u128 res = (a >= b) ? (a - b) : (static_cast<u128>(Modulus) + a - b);
return res;
}
}
/**
* @brief Perform modular multiplication for 64-bit integers.
* @tparam bit32 If true, won't use 128-bit arithmetic. You should ensure that
* all inputs are small enough to avoid overflow (i.e. bit-32).
* @param a The first multiplicand.
* @param b The second multiplicand.
* @param modulus The modulus.
* @return (a * b) % modulus
*/
template <bool bit32 = false>
constexpr uint64_t mod_mul(uint64_t a, uint64_t b, uint64_t modulus) {
if constexpr (bit32)
return a * b % modulus;
else
return static_cast<u128>(a) * b % modulus;
}
/**
* @brief Perform modular multiplication for 64-bit integers with a compile-time
* modulus.
* @tparam Modulus The modulus.
* @param a The first multiplicand.
* @param b The second multiplicand.
* @return (a * b) % Modulus
*/
template <uint64_t Modulus> constexpr uint64_t mod_mul(uint64_t a, uint64_t b) {
if constexpr (Modulus <= UINT32_MAX)
return a * b % Modulus;
else
return static_cast<u128>(a) * b % Modulus;
}
/**
* @brief Perform modular exponentiation for 64-bit integers.
* @tparam bit32 If true, won't use 128-bit arithmetic. You should ensure that
* all inputs are small enough to avoid overflow (i.e. bit-32).
* @param base The base number.
* @param exponent The exponent.
* @param modulus The modulus.
* @return (base^exponent) % modulus
*/
template <bool bit32 = false>
constexpr uint64_t mod_pow(uint64_t base, uint64_t exponent, uint64_t modulus) {
uint64_t result = 1 % modulus;
base %= modulus;
while (exponent > 0) {
if (exponent & 1)
result = mod_mul<bit32>(result, base, modulus);
base = mod_mul<bit32>(base, base, modulus);
exponent >>= 1;
}
return result;
}
/**
* @brief Perform modular exponentiation for 64-bit integers with a compile-time
* modulus.
* @tparam Modulus The modulus.
* @param base The base number.
* @param exponent The exponent.
* @return (base^exponent) % Modulus
*/
template <uint64_t Modulus>
constexpr uint64_t mod_pow(uint64_t base, uint64_t exponent) {
uint64_t result = 1 % Modulus;
base %= Modulus;
while (exponent > 0) {
if (exponent & 1)
result = mod_mul<Modulus>(result, base);
base = mod_mul<Modulus>(base, base);
exponent >>= 1;
}
return result;
}
/**
* @brief Compute the modular inverse of a 64-bit integer using Fermat's Little
* Theorem.
* @tparam Modulus The modulus (must be prime).
* @param a The number to find the modular inverse of.
* @return The modular inverse of a modulo Modulus.
*/
template <uint64_t Modulus> constexpr uint64_t mod_inv(uint64_t a) {
return mod_pow<Modulus>(a, Modulus - 2);
}
/**
* @brief Compute the modular inverse of a compile-time 64-bit integer using
* Fermat's Little Theorem.
* @tparam Modulus The modulus (must be prime).
* @tparam a The number to find the modular inverse of.
* @return The modular inverse of a modulo Modulus.
*/
template <uint64_t Modulus, uint64_t a> constexpr uint64_t mod_inv() {
return mod_pow<Modulus>(a, Modulus - 2);
}
} // namespace weilycoder
#line 11 "weilycoder/number_theory/modint.hpp"
#include <istream>
#include <ostream>
namespace weilycoder {
/**
* @brief Modular Integer with compile-time modulus.
* @tparam Modulus The modulus.
*/
template <uint64_t Modulus> struct modint {
private:
uint64_t value;
public:
constexpr modint() : value(0) {}
constexpr modint(uint32_t v) : value(v % Modulus) {}
constexpr modint(int32_t v) { from_i64(v); }
constexpr modint(uint64_t v) : value(v % Modulus) {}
constexpr modint(int64_t v) { from_i64(v); }
constexpr void from_i64(int64_t v) {
int64_t x = v % static_cast<int64_t>(Modulus);
if (x < 0)
x += Modulus;
value = static_cast<uint64_t>(x);
}
explicit operator uint64_t() const { return value; }
friend constexpr modint<Modulus> operator+(const modint<Modulus> &lhs,
const modint<Modulus> &rhs) {
return modint<Modulus>(mod_add<Modulus>(lhs.value, rhs.value));
}
friend constexpr modint<Modulus> operator-(const modint<Modulus> &lhs,
const modint<Modulus> &rhs) {
return modint<Modulus>(mod_sub<Modulus>(lhs.value, rhs.value));
}
friend constexpr modint<Modulus> operator*(const modint<Modulus> &lhs,
const modint<Modulus> &rhs) {
return modint<Modulus>(mod_mul<Modulus>(lhs.value, rhs.value));
}
modint &operator+=(const modint &other) {
value = mod_add<Modulus>(value, other.value);
return *this;
}
modint &operator-=(const modint &other) {
value = mod_sub<Modulus>(value, other.value);
return *this;
}
modint &operator*=(const modint &other) {
value = mod_mul<Modulus>(value, other.value);
return *this;
}
friend std::ostream &operator<<(std::ostream &os, const modint &m) {
return os << m.value;
}
friend std::istream &operator>>(std::istream &is, modint &m) {
int64_t v;
is >> v;
m.from_i64(v);
return is;
}
};
} // namespace weilycoder