This documentation is automatically generated by online-judge-tools/verification-helper
#include "weilycoder/number-theory/prime.hpp"#ifndef WEILYCODER_PRIME_HPP
#define WEILYCODER_PRIME_HPP
/**
* @file prime.hpp
* @brief Prime Number Utilities
*/
#include "mod_utility.hpp"
#include <cstdint>
#include <type_traits>
namespace weilycoder {
/**
* @brief Miller-Rabin primality test for a given base.
* @tparam bit32 If true, won't use 128-bit arithmetic. You should ensure that
* all inputs are small enough to avoid overflow (i.e. bit-32).
* @tparam base The base to test.
* @param n The number to test for primality.
* @param d An odd component of n-1 (n-1 = d * 2^s).
* @param s The exponent of 2 in the factorization of n-1.
* @return true if n is probably prime for the given base, false if composite.
*/
template <bool bit32, uint64_t base>
constexpr bool miller_rabin_test(uint64_t n, uint64_t d, uint32_t s) {
uint64_t x = mod_pow<bit32>(base, d, n);
if (x == 0 || x == 1 || x == n - 1)
return true;
for (uint32_t r = 1; r < s; ++r) {
x = mod_mul<bit32>(x, x, n);
if (x == n - 1)
return true;
}
return false;
}
/**
* @brief Variadic template to test multiple bases in Miller-Rabin test.
* @tparam bit32 If true, won't use 128-bit arithmetic. You should ensure that
* all inputs are small enough to avoid overflow (i.e. bit-32).
* @tparam base The first base to test.
* @tparam Rest The remaining bases to test.
* @param n The number to test for primality.
* @param d An odd component of n-1 (n-1 = d * 2^s).
* @param s The exponent of 2 in the factorization of n-1.
* @return true if n is probably prime for all given bases, false if composite.
*/
template <bool bit32, uint64_t base, uint64_t... Rest>
constexpr std::enable_if_t<(sizeof...(Rest) != 0), bool>
miller_rabin_test(uint64_t n, uint64_t d, uint32_t s) {
return miller_rabin_test<bit32, base>(n, d, s) &&
miller_rabin_test<bit32, Rest...>(n, d, s);
}
/**
* @brief Miller-Rabin primality test using multiple bases.
* @tparam bit32 If true, won't use 128-bit arithmetic. You should ensure that
* all inputs are small enough to avoid overflow (i.e. bit-32).
* @tparam bases The bases to test.
* @param n The number to test for primality.
* @return true if n is probably prime, false if composite.
*/
template <bool bit32, uint64_t... bases> constexpr bool miller_rabin(uint64_t n) {
if (n < 2)
return false;
if (n == 2 || n == 3)
return true;
if (n % 2 == 0)
return false;
uint64_t d = n - 1, s = 0;
for (; d % 2 == 0; d /= 2)
++s;
return miller_rabin_test<bit32, bases...>(n, d, s);
}
/**
* @brief Miller-Rabin primality test optimized for 64-bit integers.
* Uses a fixed set of bases that guarantee correctness
* for 64-bit integers.
* @param n The number to test for primality.
* @return true if n is prime, false if not prime.
*/
constexpr bool miller_rabin64(uint64_t n) {
return miller_rabin<false, 2, 325, 9375, 28178, 450775, 9780504, 1795265022>(n);
}
/**
* @brief Miller-Rabin primality test optimized for 32-bit integers.
* Uses a fixed set of bases that guarantee correctness
* for 32-bit integers.
* @param n The number to test for primality.
* @return true if n is prime, false if not prime.
*/
constexpr bool miller_rabin32(uint32_t n) { return miller_rabin<true, 2, 7, 61>(n); }
constexpr bool is_prime(uint64_t n) {
if (n <= UINT32_MAX)
return miller_rabin32(static_cast<uint32_t>(n));
return miller_rabin64(n);
}
/**
* @brief Compile-time primality test for a given integer.
* @tparam x The integer to test for primality.
* @return true if x is prime, false otherwise.
*/
template <uint64_t x> constexpr bool is_prime() { return is_prime(x); }
} // namespace weilycoder
#endif#line 1 "weilycoder/number-theory/prime.hpp"
/**
* @file prime.hpp
* @brief Prime Number Utilities
*/
#line 1 "weilycoder/number-theory/mod_utility.hpp"
/**
* @file mod_utility.hpp
* @brief Modular Arithmetic Utilities
*/
#include <cstdint>
namespace weilycoder {
using u128 = unsigned __int128;
template <bool bit32 = false>
constexpr uint64_t mod_add(uint64_t a, uint64_t b, uint64_t modulus) {
if constexpr (bit32) {
uint64_t res = a + b;
if (res >= modulus)
res -= modulus;
return res;
} else {
u128 res = static_cast<u128>(a) + b;
if (res >= modulus)
res -= modulus;
return res;
}
}
template <bool bit32 = false>
constexpr uint64_t mod_sub(uint64_t a, uint64_t b, uint64_t modulus) {
if constexpr (bit32) {
uint64_t res = (a >= b) ? (a - b) : (modulus + a - b);
return res;
} else {
u128 res = (a >= b) ? (a - b) : (static_cast<u128>(modulus) + a - b);
return res;
}
}
/**
* @brief Perform modular multiplication for 64-bit integers.
* @tparam bit32 If true, won't use 128-bit arithmetic. You should ensure that
* all inputs are small enough to avoid overflow (i.e. bit-32).
* @param a The first multiplicand.
* @param b The second multiplicand.
* @param modulus The modulus.
* @return (a * b) % modulus
*/
template <bool bit32 = false>
constexpr uint64_t mod_mul(uint64_t a, uint64_t b, uint64_t modulus) {
if constexpr (bit32)
return a * b % modulus;
else
return static_cast<u128>(a) * b % modulus;
}
/**
* @brief Perform modular multiplication for 64-bit integers with a compile-time
* modulus.
* @tparam Modulus The modulus.
* @tparam bit32 If true, won't use 128-bit arithmetic. You should ensure that
* all inputs are small enough to avoid overflow (i.e. bit-32).
* @param a The first multiplicand.
* @param b The second multiplicand.
* @return (a * b) % Modulus
*/
template <uint64_t Modulus, bool bit32 = false>
constexpr uint64_t mod_mul(uint64_t a, uint64_t b) {
if constexpr (bit32)
return a * b % Modulus;
else
return static_cast<u128>(a) * b % Modulus;
}
/**
* @brief Perform modular exponentiation for 64-bit integers.
* @tparam bit32 If true, won't use 128-bit arithmetic. You should ensure that
* all inputs are small enough to avoid overflow (i.e. bit-32).
* @param base The base number.
* @param exponent The exponent.
* @param modulus The modulus.
* @return (base^exponent) % modulus
*/
template <bool bit32 = false>
constexpr uint64_t mod_pow(uint64_t base, uint64_t exponent, uint64_t modulus) {
uint64_t result = 1 % modulus;
base %= modulus;
while (exponent > 0) {
if (exponent & 1)
result = mod_mul<bit32>(result, base, modulus);
base = mod_mul<bit32>(base, base, modulus);
exponent >>= 1;
}
return result;
}
} // namespace weilycoder
#line 11 "weilycoder/number-theory/prime.hpp"
#include <type_traits>
namespace weilycoder {
/**
* @brief Miller-Rabin primality test for a given base.
* @tparam bit32 If true, won't use 128-bit arithmetic. You should ensure that
* all inputs are small enough to avoid overflow (i.e. bit-32).
* @tparam base The base to test.
* @param n The number to test for primality.
* @param d An odd component of n-1 (n-1 = d * 2^s).
* @param s The exponent of 2 in the factorization of n-1.
* @return true if n is probably prime for the given base, false if composite.
*/
template <bool bit32, uint64_t base>
constexpr bool miller_rabin_test(uint64_t n, uint64_t d, uint32_t s) {
uint64_t x = mod_pow<bit32>(base, d, n);
if (x == 0 || x == 1 || x == n - 1)
return true;
for (uint32_t r = 1; r < s; ++r) {
x = mod_mul<bit32>(x, x, n);
if (x == n - 1)
return true;
}
return false;
}
/**
* @brief Variadic template to test multiple bases in Miller-Rabin test.
* @tparam bit32 If true, won't use 128-bit arithmetic. You should ensure that
* all inputs are small enough to avoid overflow (i.e. bit-32).
* @tparam base The first base to test.
* @tparam Rest The remaining bases to test.
* @param n The number to test for primality.
* @param d An odd component of n-1 (n-1 = d * 2^s).
* @param s The exponent of 2 in the factorization of n-1.
* @return true if n is probably prime for all given bases, false if composite.
*/
template <bool bit32, uint64_t base, uint64_t... Rest>
constexpr std::enable_if_t<(sizeof...(Rest) != 0), bool>
miller_rabin_test(uint64_t n, uint64_t d, uint32_t s) {
return miller_rabin_test<bit32, base>(n, d, s) &&
miller_rabin_test<bit32, Rest...>(n, d, s);
}
/**
* @brief Miller-Rabin primality test using multiple bases.
* @tparam bit32 If true, won't use 128-bit arithmetic. You should ensure that
* all inputs are small enough to avoid overflow (i.e. bit-32).
* @tparam bases The bases to test.
* @param n The number to test for primality.
* @return true if n is probably prime, false if composite.
*/
template <bool bit32, uint64_t... bases> constexpr bool miller_rabin(uint64_t n) {
if (n < 2)
return false;
if (n == 2 || n == 3)
return true;
if (n % 2 == 0)
return false;
uint64_t d = n - 1, s = 0;
for (; d % 2 == 0; d /= 2)
++s;
return miller_rabin_test<bit32, bases...>(n, d, s);
}
/**
* @brief Miller-Rabin primality test optimized for 64-bit integers.
* Uses a fixed set of bases that guarantee correctness
* for 64-bit integers.
* @param n The number to test for primality.
* @return true if n is prime, false if not prime.
*/
constexpr bool miller_rabin64(uint64_t n) {
return miller_rabin<false, 2, 325, 9375, 28178, 450775, 9780504, 1795265022>(n);
}
/**
* @brief Miller-Rabin primality test optimized for 32-bit integers.
* Uses a fixed set of bases that guarantee correctness
* for 32-bit integers.
* @param n The number to test for primality.
* @return true if n is prime, false if not prime.
*/
constexpr bool miller_rabin32(uint32_t n) { return miller_rabin<true, 2, 7, 61>(n); }
constexpr bool is_prime(uint64_t n) {
if (n <= UINT32_MAX)
return miller_rabin32(static_cast<uint32_t>(n));
return miller_rabin64(n);
}
/**
* @brief Compile-time primality test for a given integer.
* @tparam x The integer to test for primality.
* @return true if x is prime, false otherwise.
*/
template <uint64_t x> constexpr bool is_prime() { return is_prime(x); }
} // namespace weilycoder